A Variant of Jensen-steffensen’s Inequality for Convex and Superquadratic Functions
نویسنده
چکیده
A variant of Jensen-Steffensen’s inequality is considered for convex and for superquadratic functions. Consequently, inequalities for power means involving not only positive weights have been established.
منابع مشابه
A Variant of Jessen’s Inequality of Mercer’s Type for Superquadratic Functions
A variant of Jessen’s inequality for superquadratic functions is proved. This is a refinement of a variant of Jessen’s inequality of Mercer’s type for convex functions. The result is used to refine some comparison inequalities of Mercer’s type between functional power means and between functional quasi-arithmetic means.
متن کاملNormalized Jensen Functional, Superquadracity and Related Inequalities
In this paper we generalize the inequality MJn (f,x,q) ≥ Jn (f,x,p) ≥ mJn (f,x,q) where Jn (f,x,p) = n ∑ i=1 pif (xi)− f ( n ∑ i=1 pixi ) , obtained by S.S. Dragomir for convex functions. We provide cases where we can improve the bounds m and M for convex functions, and also, we show that for the class of superquadratic functions nonzero lower bounds of Jn (f,x,p)− mJn (f,x,q) and nonzero upper...
متن کاملHermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions
Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.
متن کاملInequalities of Ando's Type for $n$-convex Functions
By utilizing different scalar equalities obtained via Hermite's interpolating polynomial, we will obtain lower and upper bounds for the difference in Ando's inequality and in the Edmundson-Lah-Ribariv c inequality for solidarities that hold for a class of $n$-convex functions. As an application, main results are applied to some operator means and relative operator entropy.
متن کاملJENSEN’S INEQUALITY FOR GG-CONVEX FUNCTIONS
In this paper, we obtain Jensen’s inequality for GG-convex functions. Also, we get in- equalities alike to Hermite-Hadamard inequality for GG-convex functions. Some examples are given.
متن کامل